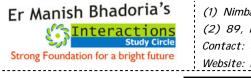
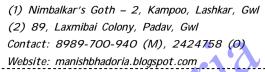

21. In the given figure, AB = AC, D is the point in the interior of $\triangle ABC$ such that $\angle DBC = \angle DCB$. Prove that AD bisects $\angle BAC$ of $\triangle ABC$.

22. In the given figure, AB = BC and AD = EC. Prove that $\triangle ABE \cong \triangle CBD$.


23. In the given figure, if AB || CD, \angle APQ = 50° and \angle PRD = 127°, find *x* and *y*.



- **24.** The perimeter of a triangular field is 300 cm and its sides are in the ratio 5 : 12 : 13. Find the length of the perpendicular from the opposite vertex to the side whose length is 130 cm.
- **25.** Find the values of a and b if $\frac{7+3\sqrt{5}}{3+\sqrt{5}}$ $\frac{7-3\sqrt{5}}{3-\sqrt{5}} = a + b\sqrt{5}$.

Or
Evaluate after rationalizing the denominator of
$$\left(\frac{25}{\sqrt{40}-\sqrt{80}}\right)$$
. It is being given that $\sqrt{5} = 2.236$, $\sqrt{10} = 3.162$.
26. Simplify: $\frac{1}{2+\sqrt{5}} + \frac{1}{\sqrt{5}+\sqrt{6}} + \frac{1}{\sqrt{6}+\sqrt{7}} + \frac{1}{\sqrt{7}+\sqrt{8}}$.

27. Prove that: $(a^2 - b^2)^3 + (b^2 - c^2)^3 + (c^2 - a^2)^3 = 3(a + b)(b + c)(c + a)(a - b)(b - c)(c - a)$.

Mathematics

(Test 1 for SA – 1, Sep' 2012)

Time allowed: 3 hours General Instructions:

Maximum Marks: 90

(i) All questions are compulsory.

(ii) The question paper consists of 34 questions divided into four sections A, B, C and D. Section A comprises of 8 questions of 1 mark each, section B comprises of 6 questions of 2 marks each, section C comprises of 10 questions of 3 marks each and section D comprises 10 questions of 4 marks each.

(iii) Question numbers 1 to 8 in section - A are multiple choice questions where you are to select one correct option out of the given four.

(iv) There is no overall choice. However, internal choice have been provided in 1 question of two marks, 3 questions of three marks each and 2 questions of four marks each. You have to attempt only one of the alternatives in all such questions.

(v) Use of calculator is not permitted.

Section A

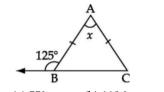
Question numbers 1 to 8 carry one mark each. For each question, four alternative choices have been provided of which only one is correct. You have to select the correct choice.

1. $\frac{p}{2}$ form of the number 0. $\overline{3}$ is:

(a)
$$\frac{3}{10}$$
 (b) $\frac{3}{100}$ (c) $\frac{1}{3}$ (d) $\frac{1}{2}$

2. Which of the following is a cubic polynomial?

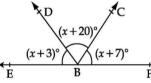
(a) $x^3 + 3x^2 - 4x + 3$ (b) $x^2 + 4x - 7$ (c) $3x^2 + 4$ (d) $3(x^2 + x + 1)$


- 3. If a polynomial f(x) is divided by x a, then remainder is (a) f(0) (b) f(a) (c) f(-a) (d) f(a) - f(0)
- 4. What is the remainder when $x^3 2x^2 + x + 1$ is divided by (x 1)? (a) 0(b) -1 (c) 1 (d) 2
- 5. In the figure below if AB = AC, the value of x is:

Classes At: (1) Nimbalkar's Goth – 2, Kampoo, Lashkar, Gwl, (2) 89, Laxmibai Colony, Padav, Gwl Contact: 8989-700-940 (M), 2424758 (O), Website: http://manishbhadoria.blogspot.com

Classes At: (1) Nimbalkar's Goth – 2, Kampoo, Lashkar, Gwl, (2) 89, Laxmibai Colony, Padav, Gwl Contact: 8989-700-940 (M), 2424758 (O), Website: http://manishbhadoria.blogspot.com

9th CBSE Maths


adoria

- (a) 55° (b) 110° (c) 50° (d) 70° 6. If $\triangle ABC$ is congruent to $\triangle DEF$ by SSS congruence rule, then: (a) $\angle C < \angle F$ (b) $\angle B < \angle E$ (c) $\angle A < \angle D$ (d) $\angle A = \angle D$, $\angle B = \angle E$, $\angle C = \angle F$
- 7. The area of an equilateral triangle is $16\sqrt{3}$ m². Its perimeter (in metres) is: (a) 12 (b) 48 (c) 24 (d) 306
- 8. The base of a right triangle is 15 cm and its hypotenuse is 25 cm. Then its area is : (a) 187.5 cm^2 (b) 375 cm^2 (c) 150 cm^2 (d) 300 cm^2

Section B

- 9. Simplify: $\left(\frac{64}{125}\right)^{-\frac{2}{3}}$
- **10.** If (x 1) is a factor of the polynomial $p(x) = 3x^4 4x^3 ax + 2$ then find the value of 'a'.
- **11.** Simplify: $(\sqrt{3} + 2)(\sqrt{3} 2)$.
- **12.** In the given figure, find the value of x.

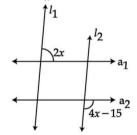
13. In the figure, OA = OB and OD = OC. Show that (i) $\triangle AOD \cong \triangle BOC$ (ii) $AD \parallel BC$.

An exterior angle of a triangle is 120° and one of the interior opposite angles is 40°. Find the other two angles of a triangle.

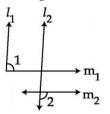
Or

Classes At: (1) Nimbalkar's Goth – 2, Kampoo, Lashkar, Gwl, (2) 89, Laxmibai Colony, Padav, Gwl Contact: 8989-700-940 (M), 2424758 (0), Website: http://manishbhadoria.blogspot.com

Er Manish Bhadoria's Interactions Study Circle


14. A point lies on x-axis at a distance of 9 units from y-axis. What are its coordinates? What will be the coordinates of a point if it lies on y axis at a distance of - 9 units from x-axis?

15. Find the value of $\left(\frac{64}{125}\right)^{-\frac{2}{3}} + \frac{1}{\left(\frac{256}{625}\right)^{\frac{1}{4}}} + \frac{\sqrt{25}}{\sqrt[3]{64}}$ Represent $\sqrt{3}$ on number line. 16. Prove that $\frac{1}{2+\sqrt{3}} + \frac{2}{\sqrt{5}-\sqrt{3}} + \frac{1}{2-\sqrt{5}} = 0$ 17. Factorise: $x^2 + \frac{x}{4} - \frac{1}{8}$. Or

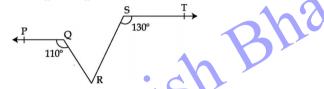

- What are the possible expressions for the dimensions of a cuboid whose volume is given below? Volume = $12ky^2 + 8ky - 20k$.
- **18.** If x = 2y + 6 then find the value of $x^3 8y^3 36xy 216$.
- **19.** In $\triangle ABC$, $\angle B = 45^{\circ}$, $\angle C = 55^{\circ}$ and bisector of $\angle A$ meets BC at a point D. Find $\angle ADB$ and $\angle ADC$.

Or

In the figure below, $l_1 || l_2$ and $a_1 || a_2$. Find the value of x.

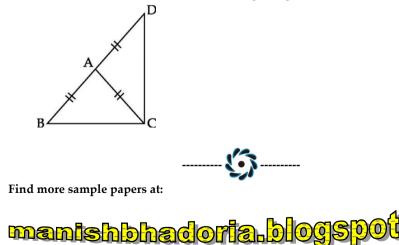
20. In the figure below, $l_1 \parallel l_2$ and $m_1 \parallel m_2$. Prove that $\angle 1 + \angle 2 = 180^\circ$.

Classes At: (1) Nimbalkar's Goth – 2, Kampoo, Lashkar, Gwl, (2) 89, Laxmibai Colony, Padav, Gwl Contact: 8989-700-940 (M), 2424758 (O), Website: http://manishbhadoria.blogspot.com


- **28.** If remainder is same when polynomial $p(x) = x^3 + 8x^2 + 17x + ax$ is divided by (x + 2) and (x + 1), find the value of *a*.
- **29.** Find α and β , if (x + 1) and (x + 2) are factors of $x^3 + 3x^2 2\alpha x + \beta$.

Factorize: $x^3 - 3x^2 - 9x - 5$.

30. Plot the points A (4, 0) and B (0, 4). Join AB to the origin O. Find the area of $\triangle AOB$.


Or

31. In the given figure, if PQ || ST, \angle PQR = 110° and \angle RST = 130° find \angle QRS.

32. In the given figure, the side QR of \triangle PQR is produced to a point S. If the bisectors of \angle PQR and \angle PRS meet at point T, then prove that \angle QTR = $\frac{1}{2} \angle$ QPR.

- **33.** ABCD is a parallelogram. If the two diagonals are equal. Find the measure of $\angle ABC$.
- **34.** In figure, ABC is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB. Show that BCD is a right angle.

